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Abstract-A new method of correlating heat transfer characteristics is presented for the case of thermally 
developing laminar flow in a smooth tube with a twisted-tape insert. The tube is considered to be at a 
constant temperature axially and peripherally and the tape is fully adiabatic. The correlating method is 
based on numerical results for the case on an infinitely thin tape and the finite tape thickness is 
incorporated through the definition of effective flow parameters. A complete step-by-step procedure for the 

implementation of the final correlative equation is presented. 

1. INTRODUCTION 

THE APPLICATION of a twisted-tape insert to a tubular 
heat exchanger may lead to significant enhancement 
of heat transfer. Based on numerical work by Date 
and Singham Cl], Shah and London [2] supplied 
empirical correlations to quantify this enhancement. 
Their results cover the case of an axially and peripher- 
ally isothermal tube containing an axially and radially 
isothermal tape at the same temperature as the tube. 
Experimental work led to empirical correlations by 
Hong and Bergles [3] for cases of axially uniform 
heat flux. 

In this paper a suggestion by Nazmeev and Niko- 
laev [4], namely to employ effective flow parameters 
for the correlations, is elaborated on in the case of 
thermally developing laminar flow. This method was 
also used for friction factor correlations and the main 
features are fully described by du Plessis and Kroger 
[S]. For the present it will suffice to state that all 
hydrodynamical and heat transfer variables are based 
on effective flow parameters. These parameters follow 
from a purely geometrical consideration of the curved 
passage formed by the twisted-tape insert and are 
recapped shortly in Appendix A. In Fig. 1 a diagram 
is presented to illustrate the tape geometry. 

In general the Nusselt number for constant property 
twisted-tape flow may be considered as a function of 
six independent variables namely, the Prandtl number 
Pr, the Reynolds number Re,, the dimensionless axial 
distance x/D, the tape twist ratio y, the tape fin 
parameter cnn and the tape thickness S. For the present 
study a fully adiabatic tape (cri. = 0) is assumed as 
a theoretical limiting case. An axially and peripherally 

7 Present address: Department of Chemical Engineering, 
University of Alberta, Edmonton, Alberta, Canada T6G 2G6. 

A-- e __I 
f 

6--A 

FIG. 1. The tube-and-tape geometry. 

constant wall temperature is assumed on either side of 
an axial step change in wall temperature in accordance 
with experimental results obtained by du Plessis [6]. 
No experimental results are available for such a set 
of boundary conditions together with constant fluid 
properties. The computer program was, however, 
extensively tested against experimental results for 
variable property twisted-tape flow and good agree- 
ment was obtained [6]. 

An extensive parametric numerical investigation 
was carried out [6] for the independent variables in 
the following ranges: 

50 < Re, < 2000 

3<y,<co 

50 < Pr d 1000 

10 < xfD < 100. 

(1) 

For any combination of Re, and y, one computational 
run was done to obtain the fully developed velocity 
profile upstream of the step change in wall tempera- 
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NOMENCLATURE 

A cross-sectional flow area 

cfin tape fin parameter 
cp fluid heat capacity 
D tube inner diameter 
G helical factor defined in equation (Al) 
H tape pitch for twist of x radians 
k fluid thermal conductivity 
Nu Nusselt number 
lil mass flow rate 
P wetted perimeter 
Pr Prandtl number 
Re Reynolds number 
X axial distance 
x* dimensionless thermal axial distance 

Y twist ratio, HID. 

Greek symbols 

6 tape thickness 

p fluid dynamic viscosity 
7t constant, 3.14159 
Y conversion factor defined in 

equation (2) 
Q swirl factor. 

Subscripts 
C tube with tape insert 
D tube. diameter 
fin relating to fin effect of tape 
Hl constant heat flux 
m mean 
T constant temperature 
t tapeless tube 
& effective flow parameter 

R relating to swirl factor 

co infinite. 

ture. Thereupon only the temperature cycle is com- 
puted during subsequent runs for different values of 
the Prandtl number since this study was limited to 
thermally developed flow. The computer program 
used for this work was based on the numerical 
procedure SIMPLE of Patankar and Spalding [7] 
for parabolic flow. 

2. NUSSELT NUMBER ACCORDING TO 
EFFECTIVE FLOW PARAMETERS 

A careful graphical study of the numerical results 

suggests that the effective flow concept should be 
introduced at the outset in order to obtain consistency 
at low Redy values when the Nusselt number is 
plotted against Reynolds number. 

Following the analysis of Shah and London [2], 
the Nusselt number Nun based on the dimensions of 
a tube without a tape, may therefore be expressed in 
terms of Nu, as follows: 

Nun = (D/D,)*(A,/A)Nu, = Y,Nu,. (2) 

In the special case of a thin (S = 0) and flat (y = CQ) 
tape, the conversion factor is fixed analytically by 

= 2.685. (3) 

The multiplying factor Y, in equation (2) is presented 
in Table 1 for some values of Y with 6 = 0. 

This result may be seen as a first basic correlation 
for Nun where Nu, is to be taken from any correlation 
valid for corresponding heat transfer in a smooth 
tube with dimensions similar to the effective flow 
parameters. Equation (2) is valid for any temperature 
boundary conditions as well as for axially local or 

Table 1. Some numerical values of 
the conversion factor Y, for cases 

of zero tape thickness (6 = 0) 

Y y, Y y, 
1.0 1.9712 8.0 2.6425 
1.5 2.1561 8.5 2.6465 
2.0 2.3001 9.0 2.6499 
2.5 2.3995 9.5 2.6527 
3.0 2.4674 10.0 2.6552 
3.5 2.5145 15.0 2.6680 
4.0 2.5481 20.0 2.6726 
4.5 2.5727 25.0 2.6747 
5.0 2.5911 30.0 2.6159 
5.5 2.6052 35.0 2.6766 
6.0 2.6162 40.0 2.6770 
6.5 2.6250 45.0 2.6713 
7.0 2.6320 50.0 2.6776 
7.5 2.6378 CC 2.6785 

mean Nusselt numbers. 
An extensive set of graphical plots, obtained from 

the numerical results, reveals the power laws as 
indicated in Table 2 for the independent effective 
flow variables. According to the humerical work an 
accuracy of *2% is expected for these powers. In 
cases of Pr > 1000 or ReJy > 350 the finite-difference 
grid employed ceases to be able to handle the severe 
curvature in the temperature profile near the tube wall 
correctly. Such incorrect values have been omitted. 

3. ASYMPTOTIC VALUE OF THE EFFECTIVE 
NUSSELT NUMBER 

The correlation for Nusselt numbers should include 
both the developing and the fully developed thermal 
states of conditions. The only limiting solution not 
extractable from the numerical data is the fully 
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Table 2. Nusselt number power law behaviour for the independent variables 
(absence of a variable indicates a power of zero) 

developed flat tape case when y = CD. An approximate 
value for Nu,,, (y = co, x/D --* co) may be deduced as 
follows from constant heat flux data available in 
literature. 

Hong and Bergles [3] analytically obtained the 
limiting value Nun,,, shown in Table 3 where the 
subscript Hl denotes the axially constant wall heat 

flux boundary condition. An investigation of the 
value of the quotient Nu,/Nu,, for thermally fully 

developed flow in several different duct geometries, 
as may be obtained, for example, from Shah and 
London [Z], suggests that this quotient for twisted- 
tape flow should be about 0.82. This assumption leads 

to the values of Nu, presented in Table 3 and should 
of course be adjusted whenever more accurate values 
for the Nusselt numbers become known. The effective 
flow Nusselt numbers presented in Table 3 are calcu- 
lated from equations (2) and (3). The value of 1.58 is 
henceforth assumed for the present derivation as an 
asymptotic lower limit to Nu,,, as x/D + cc for the 
flat tape case when y = co. 

The remainder of this paper is strictly limited to 
cases of the T boundary condition and this subscript 
will be dropped forthwith. It is also implicitly assumed 
that the Nusselt numbers refer to the axially mean 
Nusselt numbers for the thermal entrance region after 
a step change in wall temperature. 

4. INTRODUCTION OF THE THERMAL 
ENTRANCE LENGTH 

As a first correction to the basic effective flow 
correlation of equation (2), the case when y = cc will 
be. exploited in this section in order to obtain a lower 
bound for all Nu,,,, in both the developing and the 
fully developed regions of twisted-tape flow. To this 
effect the asymptotic matching technique of Churchill 
and Usagi [S] is applied to the oblique asymptote 
formed by the numerical data for the cases of thermally 

Table 3. Nusselt numbers for the case of 
thermally fully developed flow in a straight 

duct of semi-circular cross section 

Y NQH, NU,,HI NUDJ Nue., 
co 5.172 1.931 4.2 1.58 

developing flow and the approximate value of 1.58 for 
fully developed flow. Taking as independent variable 

the limiting solutions are 

hm Nu, = 1.58 
x:-m 

and, according to Table 2, 

lim Nu, = 0.845 xzWo.35 
xi-0 

(5) 

(6) 

whence 

Nu E = 1.58[1 + 0.153(~*)-‘~~~] 8 (7) 

with the so-called central value of Nu, = 2.0 at 
xf = 0.167. This result is graphically shown in Fig. 1. 

5. INTRODUCTION OF THE TWIST RATIO 

The correlation presented in equation (7) only takes 
into account the cross-sectional change of the flow 
channel. A further refinement is necessary to provide 
for the change in heat transfer due to the deformation 
of the velocity profile as the fluid is being forced 
through the curved channel. In Fig. 2 the Nusselt 
number behaviour according to changes in y and x/D 
is shown. A decrease in y causes a vertical shift, an 
increase in axial distance causes a shift to the right 
towards a lower horizontal asymptote and an increase 
in Re,Pr shifts the Nusselt number obliquely to the 
left, parallel to the asymptote for y = so. A marked 
deviation from the oblique asymptote is present in all 
cases of rather high Rely, but this effect is the 
consequence of a high swirl factor and will be dis- 
cussed at a later stage. 

A schematic representation of the influence of the 
flow swirl on the Nusselt number is reconstructed in 
Appendix B to clarify the situation at this point. The 
geometrical analysis presented in Appendix B then 
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FIG. 2. Nusselt number behaviour with respect to changes in Re,, x/D and y for Pr = 50. 

leads to the following expression for the Nusselt hypothetical asymptote has to be found. According 
number according to equations (2), (7) and (B5): to the numerical data it may be assumed that 

Nu, = Y’,Nu, 

= l.SW’,[l + o.l53(x*,)-‘~o5]“3 

x [I + 0.00W4(~~]o~117 (8) 

with 

X*, = $[ 1 + 0.0000M(~Jl”3. (9) 

Although this correlation seems accurate to within 

10% yet another asymptotic-type correction is intro- 
duced in the next section in order to account for the 
effect of strong secondary flow normal to the helical 
coordinates. 

6. CORRECTION IN CASES OF HIGH SWIRL 
FACTOR 

An increase in the swirl factor 

% = WY (10) 

leads to an increase in the deviation of the Nusselt 
number Nun from the oblique asymptote as was 
found in the previous section. At the lower limit when 
the swirl factor is zero the Nusselt number Nuo is 
correctly predicted so that 

lim NudNu, = 1. 
f&-0 

(11) 

At the other extreme, when the swirl is high, a 

lim NunjNu, = 0.35 no.‘. 
n,-m (12) 

This asymptote is then applicable for Q values up to 
700. 

Once again the Churchill-Usagi matching tech- 
nique is applied to the numerical results and it leads 
to the following corrective measure for the Nusselt 
number: 

Nu, = Nu, [l + 0.002Q,‘~4]1’7. (13) 

According to equations (8) and (13) the final Nusselt 
number correlation for thermally developing twisted- 

tape flow is thus given by 

Nun = 1.58’i’Jl + 0.153(~*,)-~~~~]~~~ 

x [l + 0.000064(0 Pr)3]o.1’7 

x [l + 0.002*:~43:'7 (14) 

with x*, being given by equation (9). A complete step 
sequence of the procedure to be followed to obtain a 
correlation according to this equation is presented in 
Table 4. The results obtained when this correlation 
is applied to the numerical data of this study is 
presented in Fig. 3 where Nut is plotted against xz. 

7. CONCLUSIONS 

The method of effective flow parameters is success- 
fully employed in the development of an empirical 
correlation procedure for thermally developing lami- 
nar flow in a smooth tube at a constant temperature 
and fitted with an adiabatic twisted tape. The therm- 
ally developing flow takes place after a step change 
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Table 4. Step sequence for the calculation of the correlative 
equation [14] for the Nusselt number of thermally develop- 

ing twisted-tape flow 

Physical entity input data: H, D, 6, m, g, cp, k 

Computational step sequence: 

y = HJD 

G = [ 1 + (n/2y)a] Ii2 

A, = nD=/4 

A, = A, - D6 

P, = 20 - 26 + nDJG 

A, = 2H=(G - 1)/n - I)6 

D, = 4A,‘P, 

x, = xA,IA, 
Re, = tiD/@A,) 

Pr = pcdk 

Re, = RedA JA,)(DJD) 

12, = ReJy 

Yz = (D/D,)?A,/A,) 

x: = x,/(Re,PrD,) 

x*, = x*[l + O&t@ Pr)3]‘13 E e 

Final Nusselt number correlating equation: 

~%,o = 1.58Yy,[I + o.l53(x~)-‘-*s]r’3 

x [l + o.OOGO64(s&Pr)~Jo~“’ 

x [l + 0.002R:~4]“7 

in wall temperature. Hydrodynamically the flow is 
considered to be fully developed throughout the whole 
length of the tube. The finite tape thickness is also 
taken into account analytically. The results are prom- 
ising although more numerical and experimental 
results are needed for confirmation of the general 

applicability of the procedure. Nevertheless, the com- 
plicated features of twisted-tape flow have in a way 
been analysed according to some predominant trends 
and this may help to elucidate future work in this 
field. It also forms a basis for analyses of thermally 
and hydrodynami~lly developing flows as well as 
the generalization to variable physical properties. 
Research is presently being directed towards the other 
limiting case of the entire tape being at the tube 
temperature. The results obtained in practice for 
constant property flow will then lie between these 
limits. 

It should be noted that the results presented in this 
paper are based on a parabolic numeric procedure. 
Since pronounced secondary how is present in cases 
of even mild swirl it is to be expected that a partially 
parabolic procedure or in the extreme case a fully 
elliptic procedure may lead to more accurate determi- 
nation of the fictitious asymptotes. 

The synopsis of the results as given in Table 4 may 
be of great help to the engineer designing to enhance 
heat transfer by means of twisted-tape inserts. 
Together with the friction factor correlation presented 
in a former paper [SJ augmentation of heat transfer 
by a lower twist ratio may be considered against the 
consequent extra pumping power needed to overcome 
the adverse increase in pressure drop. In this type of 
analysis it should be borne in mind that variable 
physical properties of the fluid may influence the 
results dramatically. 
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FIG. 3. Correlation of numerically obtained Nusselt number data for thermally developing twisted-tape 
flow. The data points include random values of Ren, Pr and x/D within the ranges indicated in equation 

(1). 
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APPENDIX A: EFFECTIVE FLOW PARAMETERS 

Through the concept of effective flow parameters one 
utilizes an effective measure for the physical dimensions of 

the curved duct formed by a tube which is supplemented by 
a tight fitting twisted tape. If a helical factor is defined as 

Gs 1,s 
J 

(Al) 

the effective cross-sectional flow area is 

A, = T,G - 1) - D6 

with a wetted perimeter of 

t.42) 

An effective hydraulic diameter is then given by 

D, = 4A,lP, (A4) 

and the effective mean length of the flow channel is defined 
in the following way to preserve volumetric dimensions 

t.45) 

An effective Reynolds number will thus be 

Re, = Reo(A,IA,XD,ID) (A6) 

with 

Re, = ID/(pA,) c.47) 

a Reynolds number based on the same volumetric flow rate 
in a tapeless tube. 

APPENDIX B: GEOMETRICAL ANALYSIS OF 
NUSSELT NUMBER BEHAVIOUR 

The dependence of the Nusselt number Nu,,, on the 
various parameters as indicated in Fig. 1, is schematically 
represented in Fig. Bl. Let xt be the effective dimensionless 
distance (point A in Fig. Bl) according to equation (4) where 
the Nusselt number is to be predicted. Numerical calculations 

Re,Pr 
\ 

I n 
B , J 

u.uuu I u.uu I u.u I 0.1 1 10 100 
x: 

FIG. Bl. Schematic representation of the computational procedure for y < m Nusselt numbers relative 
to the correlation obtained for y = co. 
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[6] suggest that the variation in Nusselt number Nu,., and 
according to a shift alongside the oblique asymptote, is 
proportional to some power of RePr/y. To the right, along- 
side the horizontal asymptote, the oblique line traversed 

l!rF mX;/X; = 0.04 y 
( 1 

. (B2) 
c 

meets the y = m line (point C in Fig. Bl) and thus defines 
a new axial distance x*, (point B in Fig. Bl). The definition From the central value of 1.26 at Re,Pr/y = 25, as is 

of xz allows the horizontal asymptotic behaviour of Nu, to obtained from the numerical data, it then follows that 

be brought into alignment with that of the y = co case. 
The present findings are now employed to predict the 9 = [ 1 + 0.0CKMM4(Re,Pr/y)3 J 113. 

.xE* 
U33) 

Nusselt number according to the schematic lay-out of Fig. 
Bl. Starting from E at x,*, the new effective distance xr has 
to be found, At flat tape conditions when y = m the two 

This equation defines the point C in Fig. Bl at which the 

axial distances must coincide since the Nusselt number is 
Nusselt number Nu, is calculated. Geometrically it then 

correctly predicted by equation (7). In cases of high twist 
follows that 

the solution is unknown. An approximate solution may, In NuE - In Nu, 
however, be calculated from the numerical computations, so lnx,* - lnxg 

= 0.35 (B4) 

that two asymptotic conditions can again be connected by 
the Churchill-Usagi method, namely and together with equation (B3) this lea& to 

~~~~_,x~lxr = 1 (Bl) Nu, = Nu,[l + 0.000064(Re,Pr/yfs]0~1”. U35) 

CORRELATION THERMIQUE POUR UN ECOULEMENT LAMINAIRE 
THERMIQUEMENT ETABLI DANS UN TUBE LISSE AVEC INSERTION DE RUBAN 

TORSADE 

R&urn&-On prksente une nouvelle mitthode de formulation des caractkristiques du transfert thermique 

pour un icoulement laminaire thermiquement tttabli dans un tube lisse avec insertion de ruban torsadt. Le 
tube est B tempkrature constante et le ruban est adaibatique. La mbthode est basCe sur des resultats 
numtriques pour un ruban infiniment mince et l’epaisseur finie du ruban est incluse dans la dtfinition dcs 

paramktres effectifs de I’Ccoulement. Une proctdure complkte de pas-&pas est prkentke pour l’kquation 

finale. 

KORRELATION DES WARMEOBERGANGES IN EINER THERMISCH 
NICHTENTWICKELTEN LAMlNAREN STRdMUNG IN EINEM GLATTEN ROHR MIT 

EINEM EINGEBAUTEN VERDRILLTEN BAND 

Zusammenfassung-Es wird eine neue Methode zur Korrelation des Wirmetiberganges im Falle einer 
thermisch nicht-entwickelten laminaren StrGmung in einem glatten Rohr mit einem eingebauten verdrillten 
Band vorgestellt. Das Rohr wird als isotherm, das Band als adiabat betrachter. Die Korrelationsmethode 
stiitzt sich auf numerische Ergebnisse fiir den Fall eines unendlich diinnen Bandes; die endliche Dicke des 
Bandes wird durch Einfiihren effektiver StrGmungs-Parameter beriicksightigt. Es wird ein Schrittverfahren 

fiir die Aufstellung der endgiiltigen Korrelationsgleichung vorgefiihrt. 

0606qEHME AAHHbIX l-IO TErUIOOEMEHY l-IPM TEPMBrIECKM 
HEYCTAHOBMBB.IEMC% JIAMHHAPHOM TEqEHMM B rJIAflKOfi TPY6E CO 

BCTABKOm B BMAE CI-IMPAJ-IbHOR JIEHTbI 

AnnoTaunR-npearroxceu HOBblti MeTOA o6o6ureHun XapaxTepucTax TenJIOnepeHOCa npn TepMurecxn 
HeyCTaHOBWBUleMCIl AaMHHapHOM TtXeHI1W B I-JIaAXOk Tpy6e CO BCTZtBXOfi B BUAe CnIipaSlbHOii JteHTbI. 
IIpeanonarae-rcn, YTO TeMnepaTypa nocTo5tHna no ocn w OKPY~HOCT~, a nenTa aanaeTca nonnoc-rbm 
aAHa6aTWECKOik MeTOn o6o6meHwr OCHOBaH Ha WiCJIeHHbIX pe3ynbTaTaX, nonyreHHbrx Ans 6ecxo- 

He’lHO TOHKOG JteHTbI, a AaHHbIe AJIlI JleHTbI KOHeVHOii TOJlUlWHbl WCnOJIb3yH)TCR AJla OnpeAWeHHS 

3@N@KTHBHbIX napaMeTpO0 ITOTOKL. AaHO nOApO6HOe OnUCaHHe MeTOAUKU ITpUMeHeHUn nOJlyYeHHOr0 

o606ualoulero cooTHoUIetui% 


